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A steady one - dimensional adiabatic flow of a magnetizable ideally conduc- 
ting inviscid perfect gas through a tube in a magnetic field, is considered. 
A differential equation is obtained determining the conditions under which 

the gas will be continuously accelerated passing through the speed of sound. 
The existence of a special divergent - convergent accelerating nozzle is elu- 
cidated. It should be noted that sonic and simple waves in a magnetizable 

compressible medium were studied in [l- 31. 

1. The adiabatic steady motion of a magnetizable ideally electroconducting in - 
viscid and non - heat - conducting perfect gas, can be described in the ferrohydrodyna - 
mic approximation by the following system of equations [3 ,4]: 

p(vVJv=-VP-/- pV(~$+&$~T-[+ :< ratH] 

! =o, D (PV) = 9 (1.1) 
rot [v x B] = 0, VB=O 

where the linear relation B = p (p, T)H connecting the magnetic induction 6 and 
magnetic field strength H is assumed to hold (standard notation is used). The expres - 

sion given for the entropy s can be conveniently replaced by the energy equation which 
can be obtained from the first two equations of (1. 1) 

V + rotH 1 r. +V $+‘u+e (1.2) 
where w is the gas enthalpy. 

We shall limit ourselves to the case of one - dimensional flow in the stream tube, 
under the assumption that all gas and field parameters depend only on the Cartesian 

coordinate 5 directed along the flow. We also assume that the velocity components 

% = uz = 0, VX = v, and the magnetic field components H,, H, and H, coincide 
with the Z, y, z - axes of the Cartesian coordinate system. 

Let us write the first, fourth and fifth equation of (1.1) and equation (1.2) for the 
one - dimensional case in question, and let us supplement them with the equation of 
state and the condition that the rate of flow through the tube is constant 

P = PRT, pvF = const 

Here R is the gas constant and F denotes the transverse cross - section of the tube. 
Solving this system of equations, we obtain the following differential relation: 
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dv dF 
(29 - a2) -=N FdX vdx (I.31 

(1- k-1) a02 

which represents a novel version of the law of reversal of action 153. Here (I and a, 
denote the speed of sound in the gas, respectively I in the presence and absence of the 

magnetic field V E,, is the specific heat of the gas at constant volume and k is the adia- 

batic exponent. 

In the limiting case of the standard magneto- gas- dynamics (p = con@ , (1.3) 
yields an expression [6] describing a motion of a perfectly conducting gas in a channel 
of variable cress section ir a transverse magnetic field. 

When W, = 0 (H, = Hz = 0, Hz = H) , the gas behaves Like an electric insula - 

tor and (1.3) yields a simpler expression describing the part played by the channel in 
the case of a nonconducting magnetizable gas. 

2. To explain the characteristic features of the flow of a magnetizable conducting 
gas in a tube (channel), it is expedient to consider particular cases of the relation p = 

p (p, T). Thus in the case p = p (p) we have 

The condition ~2 > 0 is necessary for the flow to be evo~tionary , and the sign of the 
parameter N is immaterial. When N < 0, i. e. wnen 

pH2 r d2p 2 dy2 

( )I *n’ dp -G-/-p----p dp -_ + 4n dp >‘02 
(2.2) 

it follows from the first equation of (1.3) that the change in the form of the channel 
affects the flow in the manner opposite to that caused by the usual nozzle. In order to 
accelerate the flow continuously through the speed of sound a , the channel must at 

first be diverged, and then converged after the value a has been reached, i. e. when 
N < 0 , the supersonic nozzle must be barrel - shaped. It is evident that when the con- 

dition as > 0 holds, the case of N < 0 is possible only when (du/dp)- pp-l < 0 or p > 
c6p where 01 is an arbitrary constant. 
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The above argument can be confirmed by considering the Case of magnetic gases 
with the equation of state p - 1 = ccp [7J for which P > cl~ . We assume for simplicity 
that H, = 0. Then the inequality (2.2) will become c8Nn2 (&cfi)-’ > 4@* so that for a 

paramagnetic gas (p > 1, ct > 0) we can attain, by a suitable choice of the magnetic 
field strength If,5 > 4n~.a-lao2 , the value N < o f. e. a specific property of the chan- 

nel. For a diamagnetic gas (p < 1, o < o) we always have N > 0. The condition of 
evolu~ona~ty aa > 0 holds in both cases I 

It is interesting to note that in the absence of conductivity (when, as we said be - 

fore, we must set&, = o), the first relation of (1.3) and (2.1) together yield 

where the expression for a was obtained in [3] by another method. From this it follows 
that a nonconducting magnetizable gas with p = P (p) is accelerated in the channel 

like a normal gas, but the “flow crisis” emerges when the stream velocity attains the 

speed of sound o (2.3). The quantity a may be larger or smaller than a, depending 
on the form of the function p, = p (p). 

The other particular case P = P (T) for a conducting magnetizable gas can be in- 
vestigated in the same way. It is therefore preferable to consider a general case p = 
t,8 (p, T) in the form of the Curie Law [7] P - 1 = ~PT--x. We shall again set flX = 0 

for simplicity. Then the first relation of (1.3) in which 

ft is clear that far a paramagnetic gas (a > O) the restriction az > 0 holds. If in 
addition N,s > 4~Pp-h-% ~3, the channel will have the specific property noted above, 

For a diamagnetic gas the nonevolutionarity ~2 < 0 may appear. 

The author thanks S. V. Fal’kovich for assessing the paper and expresses his thanks 
to V. V. Golosov for suggesting the subject. 
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